Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhifang Yu,* Yi Liu, Xiuyan Gu and Bing Zhao

Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: zhifang@public.tpt.tj.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å Disorder in main residue R factor = 0.061 wR factor = 0.195 Data-to-parameter ratio = 12.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3-(3,4-Methylenedioxyphenyl)-1-(2-furyl)-3-(*p*-toluenesulfonylamino)propan-1-one

The S atom of the sulfonyl group in the title compound, $C_{21}H_{19}NO_6S$, has a distorted tetrahedral geometry. The amino groups and sulfonyl groups are connected by intermolecular $N-H\cdots O$ hydrogen bonds. The furan ring is disordered in one of the two independent molecules in the asymmetric unit.

Received 10 March 2005 Accepted 6 April 2005 Online 16 April 2005

Comment

The Reformatsky addition reaction to imines (Gilman & Speeter, 1943) has been employed as a convenient method for synthesizing β -lactams, β -amino acids and their derivatives. We have recently investigated a new addition reaction to *N*-sulfonylimines with zinc enolates to give the corresponding β -sulfonaminoketones. The title compound, (I), was synthesized by the reaction of 2-(bromoacetyl)furan and *N*-[(3,4-methyl-enedioxyphenyl)methylene]-4-methylbenzenesulfonamide (Shim & Yamamoto, 2000) in the presence of active zinc powder. An X-ray crystal structure determination of (I) was carried out in order to elucidate the structure and the results are presented here.

The molecular structure of (I) and the atom-numbering scheme are shown in Fig. 1. The asymmetric unit of (I) contains two independent molecules. In one molecule, the sulfonylphenyl ring and the 3,4-methylenedioxyphenyl ring are inclined at an angle of $18.9 (3)^{\circ}$; the dihedral angle is $12.9 (3)^{\circ}$ in the second molecule. The S atom in each independent molecule has a distorted tetrahedral geometry with angles deviating significantly from the regular tetrahedral value (Table 1). The two independent molecules form two centrosymmetric dimers connected by intermolecular N– $H \cdots O$ hydrogen bonds between the amino and sulfonyl groups (Table 2).

Experimental

2-(Bromoacetyl)furan (1.5 mmol) was added to a solution of N-[(3,4-methylenedioxyphenyl)methylene]-4-methylbenzenesulfonamide (1.0 mmol) in dichloromethane (5.0 ml). Zinc powder (3.0 mmol) and a trace amount of iodine were added to the mixture. The reaction

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

organic papers

mixture was refluxed with stirring for 11 h and dried over magnesium sulfate. After the solvent was evaporated, a white powder was obtained (yield 58%) by flash chromatography (ethyl acetate–tri-chloromethane). Recrystallization by slow evaporation of an ethyl acetate–petroleum ether mixture afforded the compound as a crystalline solid (m.p.399–401 K). Spectroscopic analysis: IR (KBr, νcm^{-1}): 3247, 1671, 1326, 1157; ¹H NMR (CDCl₃, δ , p.p.m.): 7.61–7.11 (*m*, 7H), 6.61 (*s*, 2H), 5.90–6.51 (*m*, 3H), 5.66 (*br*, 1H), 4.71 (*q*, 1H), 3.35 (*dd*, *J* = 6.0, 16.4 Hz, 1H), 3.24 (*dd*, *J* = 6.0, 16.8 Hz, 1H), 2.37 (*s*, 3H).

Crystal data

$D_x = 1.396 \text{ Mg m}^{-3}$
Mo K α radiation
Cell parameters from 890
reflections
$\theta = 2.5 - 21.0^{\circ}$
$\mu = 0.20 \text{ mm}^{-1}$
T = 293 (2) K
Prism, colorless
$0.30 \times 0.24 \times 0.22 \text{ mm}$
6939 independent reflections

3691 reflections with $I > 2\sigma(I)$

 $R_{int} = 0.051$ $\theta_{max} = 25.0^{\circ}$ $h = -16 \rightarrow 18$ $k = -14 \rightarrow 14$

 $l = -25 \rightarrow 19$

Bruker SMART CCD area detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.943, T_{\max} = 0.956$
20215 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0807P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.061$	+ 4.1226P]
$wR(F^2) = 0.195$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} = 0.002$
6939 reflections	$\Delta \rho_{\rm max} = 0.50 \text{ e } \text{\AA}^{-3}$
560 parameters	$\Delta \rho_{\rm min} = -0.79 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

S1-O4	1.419 (3)	S2-O10	1.419 (3)
S1-O3	1.442 (3)	S2-O9	1.432 (3)
S1-N1	1.616 (4)	S2-N2	1.613 (3)
S1-C15	1.753 (4)	S2-C36	1.754 (4)
N1-C7	1.471 (5)	N2-C28	1.470 (5)
04 - 51 - 03	1186(2)	09 = 52 = N2	103 61 (18)
04 = 51 = 05 118.0 (2) 04 = 51 = N1 109.5 (2)		010-82-036	107.14(19)
O3-S1-N1	3-S1-N1 109.5 (2) C		109.5 (2)
O4-S1-C15	107.6 (2)	N2-S2-C36	108.22 (18)
O3-S1-C15	108.8 (2)	C28-N2-S2	124.2 (3)
N1-S1-C15	107.64 (18)	C32-O11-C35	105.8 (3)
C7-N1-S1	120.9 (3)	C31-O12-C35	106.2 (3)
O10-S2-O9	119.0 (2)	C22-O7-C25	100.0 (7)
O10-S2-N2	109.0 (2)	C23-C22-O7	115.2 (8)
O4-S1-N1-C7	57.8 (3)	S2-N2-C28-C29	96.9 (4)
O3-S1-N1-C7	-174.4(3)	\$2-N2-C28-C27	-136.7(3)
C15-S1-N1-C7	-58.9 (4)	O10-S2-C36-C41	-174.5 (4)
S1-N1-C7-C8	93.6 (4)	O9-S2-C36-C41	55.2 (4)
S1-N1-C7-C6	-140.5(3)	N2-S2-C36-C41	-57.1 (4)
O10-S2-N2-C28	57.2 (3)	O10-S2-C36-C37	3.0 (4)
O9-S2-N2-C28	-175.2(3)	O9-S2-C36-C37	-127.3 (4)
C36-S2-N2-C28	-59.0 (4)	N2-S2-C36-C37	120.4 (4)

Figure 1

View of the asymmetric unit of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. Only one disorder component is shown.

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} N1 {-} H1 {\cdot} {\cdot} {\cdot} O3^i \\ N2 {-} H2 {\cdot} {\cdot} {\cdot} O9^{ii} \end{array}$	0.86	2.26	2.957 (5)	137.8
	0.86	2.21	3.012 (5)	154.5

Symmetry codes: (i) 1 - x, 2 - y, -z; (ii) -x, 1 - y, -z.

All H atoms were located in a difference Fourier map and were refined as riding (N–H = 0.86 Å and C–H = 0.93–0.98 Å). For NH, CH and CH₂ groups, U_{iso} (H) values were set equal to $1.2U_{eq}$ (carrier atom) and for the methyl groups they were set equal to $1.5U_{eq}$ (carrier atom). In one molecule, the furyl ring is disordered over two sites. The occupancies are 0.62 (2) and 0.38 (2).

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

The authors thank the State Key Laboratory of Elemento-Organic Chemistry, Nankai University whose Visiting Scholar Foundation supported this research. The authors thank Tianjin University for support of this work under its '985' Project.

References

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Gilman, H. & Speeter, M. (1943). J. Am. Chem. Soc. 65, 2255-2256.

Sheldrick, G. M.(1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M.(1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Shim, J. G. & Yamamoto, Y.(2000). Heterocycles, 52, 885-895.